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Very High-Dimensional Integration and
Mathematical Finance

The valuation of financial instruments often requires the calculation of

very high-dimensional integrals. Dimensions of 360 and higher are not

unusual. What do the complexity results of Chapter 3 suggest about

the numerical calculation of such integrals? We recall several results of

that chapter, for the convenience of the reader.

In the worst case setting for integrands of total smoothness r, the

complexity of guaranteeing an answer to within ε is of order (1/ε)d/r,

where d is the dimension of the domain of integration. Hence if r > 0,

the problem is intractable in dimension; if r = 0, it is unsolvable. To

make the problem computationally feasible, we must either weaken the

worst case assurance or change the class of inputs.

First, we describe replacing the worst case guarantee by a stochastic

assurance. In the randomized setting, we settle for the expected cost of

an approximation to be at most ε, where the expectation is with respect

to the distribution determining the approximation. Suppose that we use

information consisting of sample points chosen as independent uniformly

distributed random variables from [0, 1]d. If r = 0, the Monte Carlo

algorithm is optimal, and its complexity is of order 1/ε2. If r > 0,

the complexity is of order 1/εσ, where σ < 2. Hence in the randomized

setting, integration is strongly tractable. Because of its 1/ε2 cost, Monte

Carlo is widely used in many applications.

Can we do better than 1/ε2? The answer is “yes” if we’re willing to

shift to the average case setting. In this setting, we guarantee that the

expected error is at most ε, where the expectation is now with respect to

the measure on the space of integrands. Since the average case setting

is deterministic, we would like a procedure for obtaining the sample

points. The experimental design problem of selecting sample points

with good average cost has been open since Sacks & Ylvisaker [1966].

43



44 Very High-Dimensional Integration and Mathematical Finance

It was settled by Woźniakowski [1991], for the case of the Wiener sheet

measure on the space of continuous functions on [0, 1]d. Woźniakowski

showed that the integrand should be evaluated at points that are related

to low discrepancy points. Since discrepancy theory has been extensively

studied in number theory, one could now draw on a very large existing

literature.

Rather than attempting to select points from a uniform distribution,

why not simply select uniform points deterministically? Uniformity is

not sufficient, as the example of regular grids shows. Papageorgiou &

Wasilkowski [1990] showed that the cost of any quadrature rule that

used regular grid points is exponential in d.

What we desire is a “small” set of points in d dimensions, which is

uniform. By uniform, we mean that the fraction of points lying within

any rectangular subregion (with sides parallel to the coordinate axes)

of the d-dimensional unit cube is as close as possible to the volume of

that subregion. The discrepancy of a sequence of points is a measure of

its deviation from uniformity; we therefore desire low discrepancy. The

discrepancy can be measured in various ways; we confine ourselves here

to L2 and L∞ discrepancy.

For x = [x1, . . . , xd] ∈ [0, 1]d, define [0, x) = [0, x1) × · · · × [0, xd).

Let χ[0,x) be the characteristic function of [0, x). For t1, . . . , tn ∈ [0, 1]d,

define

Rn(x, t1, . . . , tn) =
1

n

n∑
i=1

χ[0,x)(ti) −
n∏

i=1

ti.

The L2 and L∞ discrepancy are respectively defined as

D
(2)
n,d(t1, . . . , tn) ≡ D

(2)
n,d =

(∫
[0,1]d

Rn(x, t1, . . . , tn)2 dx

)1/2

and

D
(∞)
n,d (t1, . . . , tn) ≡ D

(∞)
n,d = sup

x∈[0,1]d
|Rn(x, t1, . . . , tn)|.

For historical reasons, D
(∞)
n,d is usually written D∗

n,d, and we’ll follow

that usage here. See the monographs by Niederreiter [1992] and Drmota

& Tichy [1997] for extensive material on discrepancy.

We next relate the average case L2 integration error to the L2 dis-

crepancy. Let

I(f) =

∫
[0,1]d

f(x) dx,
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and let

U(f) =
1

n

n∑
i=1

f(ti),

for arbitrary t1, . . . , tn. Let w be the classical Wiener sheet measure w

on the space C([0, 1]d) of continuous functions on [0, 1]d. Woźniakowski

[1991] proved that the L2 integration error is given by

(∫
C([0,1]d)

[I(f) − U(f)]2 w(df)

)1/2

= D
(2)
n,d(z1, . . . , zn),

where

zi = 1 − ti for 1 ≤ i ≤ n. (4.1)

.

Hence to minimize the average case L2 integration error, we choose

the sequence t1, . . . , tn ∈ [0, 1]d such that D
(2)
n,d(z1, . . . , zn) is as small as

possible. Roth ([1954], [1980]) proved that

inf
z1,...,zn∈[0,1]d

D
(2)
n,d(z1, . . . , zn) = Θ

(
n−1(log n)(d−1)/2

)
. (4.2)

Furthermore, the optimal zi are related to Hammersley points.

We turn to the L∞ discrepancy D∗
n,d. For our present purposes, the

most important property of D∗
n,d is given by the celebrated Koksma-

Hlawka inequality (Niederreiter [1992], p. 20): if f has bounded varia-

tion V (f) on [0, 1]d (in the sense of Hardy and Krause), then for any

points t1, . . . , tn ∈ [0, 1]d, we have

|I(f) − U(f)| ≤ V (f)D∗
n,d(t1, . . . , tn). (4.3)

We remark that V (f) is finite if f has one derivative in each coordinate

direction; however, the calculation of V (f) for large d may be an onerous

task, as its definition contains 2d − 1 terms.

To minimize the upper bound on the integration error in (4.3), we

want to choose t1, . . . , tn so that D∗
n,d(t1, . . . , tn) is as small as possible.

How small can that be? It is believed that

D∗
n,d(t1, . . . , tn) ≥ Bd n

−1(log n)d−1 ∀n ≥ 2,

where Bd depends only on the dimension d. Furthermore, there exist

points t∗1, . . . , t
∗
n ∈ [0, 1]d such that

D∗
n,d(t

∗
1, . . . , t

∗
n) = O

(
n−1(log n)d−1

)
.
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More generally, any sequence t1, . . . , tn satisfying

D∗
n,d(t1, . . . , tn) = O

(
n−1(log n)d

)
is said to be a low discrepancy sequence (lds); see Niederreiter [1992]

and Tezuka [1995]. Many examples of lds are known, including Halton,

Sobol’, Hammersley, Faure, generalized Faure, and generalized Nieder-

reiter sequences. Although many lds share the same asymptotic be-

havior, their observed performance on important practical problems can

differ widely, as we shall see below.

We compare and contrast the Woźniakowski and Koksma-Hlawka the-

orems. Woźniakowski’s theorem states that to get optimal integration

error averaged over a space of integrands, one should use points having

minimal L2 discrepancy. The Koksma-Hlawka theorem states that to

minimize the upper bound on the integration error for any integrand of

bounded variation, one should use points having minimal L∞ discrep-

ancy; that is, an lds.

The motivation for looking at average behavior was to see if the Monte

Carlo algorithm could be beaten. Recall that the expected error of the

Monte Carlo algorithm is proportional to n−1/2, while we’ve seen that

there are deterministic sequences whose expected or worst case error is

proportional to n−1 times a polylog factor. To fix ideas, let’s focus on

comparing n−1/2 with n−1(log n)d. What can we conclude?

• n−1(log n)d is asymptotically (in n) smaller than n−1/2. This is why

low discrepancy methods have long been of interest.

• For applications such as mathematical finance, n is modest in size

while d is in the hundreds or thousands. Therefore, the asymptotic

implications don’t apply.

For d large and n fixed, the factor (logn)d looks ominous. There-

fore, leading experts believed that lds should not be used for high-

dimensional problems. For example, d = 12 was considered high by

Bratley et al. [1992].

We’ll estimate
∫
[0,1]d

f(x) dx by n−1
∑n

i=1 f(ti). If the ti are chosen

at random, this is the Monte Carlo (mc) algorithm. If the ti are chosen

from a (deterministic) lds, this is a quasi-Monte Carlo (qmc) algorithm.

We believe that the term “quasi-Monte Carlo algorithm” is somewhat

misleading because these algorithms are completely deterministic; how-

ever, since this term is so widely used, we will follow the general usage.

In 1992, one of us (jft) and a then Ph.D. student (S. Paskov) followed

a suggestion of I. Vanderhoof to test the efficacy of qmc algorithms for
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the valuation of financial derivatives. A financial derivative is a financial

instrument whose value is derived from an underlying asset. At the time

of this writing (1998) it is estimated that there are some ten to twenty

trillion dollars in assets covered by financial derivatives. The valuation of

financial derivatives is therefore of considerable interest to the financial

community and a fascinating problem for the computational scientist.

The valuation of financial derivatives often requires very high-dimen-

sional integration. Boyle [1977] suggested the use of mc, which became

a major computational tool in the financial community.

The model problem chosen to compare the efficacy of qmc with mc

was a 30-year Collateralized Mortgage Obligation (cmo). The particular

cmo chosen required the computation of ten 360-dimensional integrals

(360 being the number of months in thirty years). Since the model

problem required some 105 floating point operations per sample point,

it was important to use as few points as possible. See Paskov [1997] for

a description of the cmo.

Software construction and testing of qmc methods for financial com-

putations were begun in Fall, 1992. The first published announcement

about the empirical results was in Traub & Woźniakowski [1994]. De-

tails were reported in Paskov & Traub [1995], Papageorgiou & Traub

[1996], and Paskov [1997]. For a popular account, see Cipra [1996].

We mention here a few of the empirical results from Paskov & Traub

[1995]. Two qmc algorithms based on Halton and Sobol’ points were

compared with the Monte Carlo algorithm.

• Both qmc algorithms outperformed the mc algorithm.

• The convergence of the qmc algorithms was much smoother than that

of the mc algorithm. This makes automatic termination of qmc easier

and more reliable than mc.

• mc is very sensitive to the initial seed.

We next summarize empirical results of Papageorgiou & Traub [1996].

They compared qmc using the generalized Faure sequence (see Tezu-

ka [1995]) and using a modified Sobol’ sequence. It must be stressed

that the results reported below are for the modified Sobol’ sequence.

Published Sobol’ sequences (such as in Press et al. [1992]) will not lead

to such results. We refer to the two qmc algorithms as qmc-gf and

qmc-ms, respectively.

The conclusions regarding the valuation of the cmo model problem

can be divided into three groups. Similar results hold for other deriva-

tives, such as Asian options.
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(i) qmc and mc Algorithms

Both qmc algorithms beat the mc algorithm by a wide margin.

In particular:

• Both the qmc-gf and the qmc-ms algorithms converge signif-

icantly faster than the mc algorithm.

• The qmc-gf algorithm always converges at least as fast as the

qmc-ms algorithm, and frequently faster.

• The mc algorithm is sensitive to the initial seed.

(ii) Small Number of Sample Points

qmc algorithms outperform the mc algorithm for a small number

of sample points.

In particular:

• qmc algorithms attain small error with a small number of

points.

• For the hardest of the ten integrals required for the cmo valu-

ation, the qmc-gf algorithm achieves accuracy 10−2 with just

170 points, while qmc-ms uses 600 points. On the other hand,

the mc algorithm requires 2700 points for the same accuracy.

• The mc algorithm tends to waste points due to clustering,

which severely compromises its performance when the sample

size is small.

(iii) Speedup

The advantage of qmc algorithms over the mc algorithm is fur-

ther amplified as the accuracy demands grow.

In particular:

• qmc algorithms are 20 to 50 times faster than the mc algorithm

with even moderate sample sizes (2000 deterministic points or

more).

• When high accuracy is desired, qmc algorithms can be 1000

times faster than mc.

We amplify a number of these points. The fact that the qmc-gf

algorithm achieves accuracy 10−2 with just 170 points is particularly

important for financial computations. Since the interest and prepay-

ment functions have considerable uncertainty, people in the financial

community find valuations whose accuracy is one part in a hundred to

be sufficient. Furthermore, very rapid valuations are important because

a financial institution may have a large book of instruments which have

to be valued on a regular basis.
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Fig. 4.1 512 pseudorandom points
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Fig. 4.2 512 low discrepancy points

Thus performance with a small number of points is particularly im-

portant for this class of applications. Contrast Figure 4.1, which exhibits

512 pseudorandom points, with Figure 4.2, which exhibits 512 low dis-

crepancy points.

A software system called finder for computing high-dimensional in-

tegrals has been built at Columbia University. finder has modules for

generating generalized Faure points and modified Sobol’ points. As fur-

ther improvements in low discrepancy methods are found, they will be

added to the software. finder may be obtained from Columbia Univer-

sity.

Tests by other researchers, including Joy et al. [1996] and Ninomiya
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& Tezuka [1996], lead to similar conclusions for the high-dimensional

problems of mathematical finance.

The excellent results reported above are empirical. A number of hy-

potheses have been advanced to explain the observed results. For exam-

ple, Caflisch et al. [1997] use a Brownian bridge argument to infer that

the effective dimension of the cmo is much lower than its stated dimen-

sion. Another concept of effective dimension may be found in Paskov

[1997].

We will discuss a very recent paper by Sloan & Woźniakowski [1998b],

which might provide an explanation. Their paper is based on the ob-

servation that many problems of mathematical finance are highly non-

isotropic. Assume that the various dimensions have “weights” γ1, . . . , γd,

where

1 = γ1 ≥ γ2 ≥ . . . ≥ γd ≥ 0.

For any such sequence γ, they define a class Fγ of integrands. (Note that

this is an instance of changing the class of inputs, which was discussed

in Chapter 3.)

Sloan and Woźniakowski prove the following theorem. Let n(d, γ, ε)

be the minimal number of sample points needed to reduce the initial

error by a factor of ε, for any integrand in Fγ . If

s(d, γ) =

d∑
j=1

γj

is finite and “small,” there exists a qmc method such that

n(d, γ, ε) ≤ Cε−p for all d, (4.4)

where C and p are constants, with p ≤ 2. Note that unlike the stochastic

guarantee of mc, this theorem offers a worst case guarantee.

Remark : For d finite and fixed, s(d, γ) is, of course, finite. However, d

is permitted to be arbitrarily large and, indeed, to go to infinity.

The Sloan-Woźniakowski paper leaves a number of issues unresolved.

The theorem of Sloan and Woźniakowski is about a class of integrands.

To show that this explains why qmc methods are so effective for prob-

lems in finance, it has to be established that these problems have inte-

grands belonging to Fγ .

The proof of (4.4) is nonconstructive. It is of a great practical impor-

tance to construct sample points for which (4.4) holds. It is hoped that

known low discrepancy points satisfy (4.4). Furthermore, it is known
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that p ≤ 2. If it could be shown that p < 2, then qmc, with a worst

case guarantee, would beat mc. If it could be shown that p is close to 1,

this would explain the empirical results from mathematical finance.

We summarize the discussion above by

Open Problems:

. Which financial problems have integrands belonging to Fγ?

. Provide a deterministic construction of a strongly tractable qmc

method for Fγ .

. What is the best value of the exponent p in (4.4)?

Research into why qmc performs so well for high-dimensional integrals

of mathematical finance is currently a very active area.

qmc looks promising for problems besides those occurring in mathe-

matical finance. For example, Papageorgiou & Traub [1997] reported

test results on the model integration problem (suggested by Keister

[1996]) (
1

2π

)d/2 ∫
Rd

cos(‖x‖)e−‖x‖2

dx, (4.5)

where ‖ · ‖ denotes the Euclidean norm and d = 25. This problem is of

particular interest, since it is isotropic, as opposed to the integrands of

the finance problems, which are non-isotropic. The performance of the

qmc-gf algorithm is very impressive. It achieved error 10−2 using fewer

than 500 points. Its error over the range tested (up to 106 points) was

C · n−1, with C < 30. By comparison, the error of the mc algorithm

was proportional to n−1/2. Although Keister [1996] stopped at d = 25,

Papageorgiou & Traub [1997] tested (4.5) for dimension as high as 100,

with results similar to those for d = 25.

There exists a transformation that reduces (4.5) to a univariate prob-

lem. The empirical convergence rate of qmc is n−1, as if it sees that this

is really a one-dimensional problem. In contrast, the empirical conver-

gence rate of mc remains proportional to n−1/2; it does not see that the

problem is really one-dimensional. An analysis by Papageorgiou [1998]

shows that an upper bound on the convergence rate of qmc is of order

n−1(log n)1/2.

These test results suggest that non-isotropicity is not the only condi-

tion under which qmc is superior to mc. Our current belief is that there

are a number of classes of integrands for which qmc is superior to mc.

We end this chapter by summarizing its main points. We began

with the Koksma-Hlawka and Woźniakowski theorems, which state that
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(modulo a polylog factor) qmc algorithms converge as n−1, while mc

converges as n−1/2. These theorems make qmc appear to be a very

promising alternative to mc. However, these theorems are for the asymp-

totic case; they say nothing about the kinds of problems one must solve

in areas such as mathematical finance, where d is very large and the

typical values of n are very much not “asymptotic.” But the empirical

results indicate that qmc is markedly superior to mc for many problems

of mathematical finance. The theory should be enriched to explain the

test results. We pose the following

Open Problem: Characterize classes of integrands for which qmc is

superior to mc.


